Developing

Neural Algorithmic Reasoning

Andreea Deac
Andrew Dudzik
Learning on Graphs Conference
10 December 2022

Motivation

What do we mean by algorithm?

Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

What do we mean by algorithm?

Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

An algorithm is thus a sequence of computational steps that transform the input into the output.

What do we mean by algorithm?

Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

An algorithm is thus a sequence of computational steps that transform the input into the output.

An algorithm can be specified in English, as a computer program, or even as a hardware design. The only requirement is that the specification must provide a precise description of the computational procedure to be followed.

What do we mean by algorithm?

A common example of an algorithmic task is the sorting problem:

- Input: A sequence of n numbers $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
- Output: A permutation (reordering) $\left[a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right]$ of the input sequence, such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$.

What do we mean by algorithm?

A common example of an algorithmic task is the sorting problem:

- Input: A sequence of n numbers $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
- Output: A permutation (reordering) $\left[a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right]$ of the input sequence, such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$.

One algorithm that solves it is insertion sort.

```
Insertion-Sort \((A)\)
for \(j=2\) to A.length
key \(=A[j]\)
\(3 \quad / /\) Insert \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\).
\(4 \quad i=j-1\)
\(5 \quad\) while \(i>0\) and \(A[i]>k e y\)
\(6 \quad A[i+1]=A[i]\)
\(7 \quad i=i-1\)
8
    \(A[i+1]=k e y\)
```


Why algorithms?

Essential "pure" forms of combinatorial reasoning

- 'Timeless' principles that remain, regardless of the model of computation
- Completely decoupled from any form of perception*
*though perception itself may also be expressed in the language of algorithms

Why algorithms?

Essential "pure" forms of combinatorial reasoning

- 'Timeless' principles that remain, regardless of the model of computation
- Completely decoupled from any form of perception

Favourable properties

- Trivial strong generalisation
- Compositionality via subroutines
- Provable correctness and performance guarantees
- Interpretable operations / pseudocode

Why algorithms?

Essential "pure" forms of combinatorial reasoning

- 'Timeless' principles that remain, regardless of the model of computation
- Completely decoupled from any form of perception

Favourable properties

- Trivial strong generalisation
- Compositionality via subroutines
- Provable correctness and performance guarantees
- Interpretable operations / pseudocode

Hits close to home, for many of us :)

When do algorithms exhibit flaws?

A simple example

"Find the optimal path from A to $B "$

A simple example

"Find the optimal path from A to B"

The theoretical computer scientist diligently uses the Dijkstra hammer!

A simple example

"Find the optimal path from A to B"

Natural inputs

$\overline{\mathscr{x}}$
Abstract inputs

Abstract outputs

This kind of question usually hides the real-world problem underneath...

A simple example

"Find the optimal path from A to B"

Can we ever hope to manually do the mapping necessary?

Not really... (known at least since 1955)

SECRET

II. THE ESTIMAITING OF RAILWAY CAPACITTES

U. S. Alkil,

RESEARCH MEMORANDUM

FUNDAMENTALS OF A METHOD FOR EVALUATING RAIL NET CAPACITIES (U)
T. E. Harris
F. S. Ross

$$
\mathrm{RM}-1573
$$

October 24. 1955
Copy .No. \qquad

This matenal contains iaformation uffectiay the notionat defense of the United States wiltin the meaning of the esponage laws, Title 18 US. Secs 793 ond 794 , the trunsmissicn of the revelation of which in any manere to on unouthetized petson is prohibited by law

Tha evaluation of both railway syatem and individual track capacities in, to a conciderable extent, on mrt. The authors know of no tested mathematical model or formals that includes all or the variations and imponderables that mat be weighed.* Even when the individual bas been closely assoclated with the particular territory he is evalusting, the final answer, howaver accurate, is largely one of judgment and experjence.

The core problem

A divide between algorithms and real-world tasks they were designed to solve!
Satisfying the algorithm's strict preconditions may drastically lose information.

The core problem

A divide between algorithms and real-world tasks they were designed to solve!
Satisfying the algorithm's strict preconditions may drastically lose information.

It doesn't matter that the algorithm is provably correct, if it's executed on the wrong inputs!

The core problem

A divide between algorithms and real-world tasks they were designed to solve!
Satisfying the algorithm's strict preconditions may drastically lose information.

It doesn't matter that the algorithm is provably correct, if it's executed on the wrong inputs!

This is tricky even without considering issues like partially observable data, etc.
In this tutorial, we will attack this core problem by neuralising the algorithm

Neuralising an algorithm

Attacking the core problem

The problem rests on manual feature engineering of raw data. This is what neural networks were designed to solve! :)

Let's replace our feature extractor with a neural network.

Train the neural network using gradient descent.

Attacking the core problem

The problem rests on manual feature engineering of raw data. This is what neural networks were designed to solve! :)

Let's replace our feature extractor with a neural network.

This used to be problematic due to discreteness of the algorithm. Nowadays, there exist established ways to backpropagate through arbitrary black-box optimisation functions (see, e.g., Vlastelica et al., ICLR'20).

The algorithmic bottleneck (informally)

Fundamental issue: our pipeline strongly commits to using the algorithm.
Once we compute the inputs to the algorithm, we are fully trusting what comes out of it, with no way to revert any mistakes!

The algorithmic bottleneck (informally)

Fundamental issue: our pipeline strongly commits to using the algorithm.
Once we compute the inputs to the algorithm, we are fully trusting what comes out of it, with no way to revert any mistakes!

In many scenarios, this can lead to the algorithmic bottleneck problem. What if there is insufficient training data to properly estimate the inputs? What if we need to run more than one algorithm?

Breaking the bottleneck

Neural networks derive flexibility from their high-dimensional latents, $z \in \mathbb{R}^{m}$.
If any component of the latent is poorly predicted, others can step in!

To break the bottleneck, replace the algorithm with a processor network, \mathbf{P}.

Breaking the bottleneck

 with the algorithmic steps, we have everything we need!

(differentiable, no bottlenecks, can fit residual algorithms by skip-connecting \mathbf{P})

Breaking the bottleneck

 with the algorithmic steps, we have everything we need!

to obtain latent-state neural networks that align with algorithms?

Neural
 Algorithmic Reasoning

Why do we need a new field?

What is different about learning a good \mathbf{P}, compared to any other ML task?
It needs to imitate the steps of the target algorithm faithfully-which means it must extrapolate well beyond the training set!

This is a regime in which neural nets tend to struggle!

Why do we need a new field?

What is different about learning a good \mathbf{P}, compared to any other ML task?
It needs to imitate the steps of the target algorithm faithfully-which means it must extrapolate well beyond the training set!

This is a regime in which neural nets tend to struggle!
Neural Algorithmic Reasoning is an emerging area that attempts to build potent processor networks \mathbf{P}. This can be done in a variety of ways:

- Architecture choice of P, encoder or decoder
- Choice of input features / their transformations
- Training schedule for the overall system

What do we know, theoretically?

- Algorithmic alignment
- Better structural alignment of the model to the algorithm implies better generalisation
- Informal observation: GNNs align well with dynamic programming!
- Xu et al., "What Can Neural Networks Reason About?". ICLR'20 [See also: Part III of tutorial.]

What do we know, theoretically?

- Algorithmic alignment
- Better structural alignment of the model to the algorithm implies better generalisation
- Informal observation: GNNs align well with dynamic programming!
- Xu et al., "What Can Neural Networks Reason About?". ICLR'20 [See also: Part III of tutorial.]
- Linear algorithmic alignment
- To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
- Xu et al., "How Neural Networks Extrapolate...". ICLR'21

What do we know, theoretically?

- Algorithmic alignment
- Better structural alignment of the model to the algorithm implies better generalisation
- Informal observation: GNNs align well with dynamic programming!
- Xu et al., "What Can Neural Networks Reason About?". ICLR'20 [See also: Part III of tutorial.]
- Linear algorithmic alignment
- To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
- Xu et al., "How Neural Networks Extrapolate...". ICLR'21

GNN Architectures

$h_{u}^{(k)}=\Sigma_{v} \mathbf{M L} \mathbf{P}^{(k)}\left(h_{v}^{(k-1)}, h_{u}^{(k-1)}, w(v, u)\right)$
X MLP has to learn non-linear steps
$h_{u}^{(k)}=\min _{v} \mathbf{M L P}{ }^{(k)}\left(h_{v}^{(k-1)}, h_{u}^{(k-1)}, w(v, u)\right)$
\checkmark MLP learns linear steps

DP Algorithm (Target Function)

(b) Input representation

What do we know, theoretically?

- Algorithmic alignment
- Better structural alignment of the model to the algorithm implies better generalisation
- Informal observation: GNNs align well with dynamic programming!
- Xu et al., "What Can Neural Networks Reason About?". ICLR'20 [See also: Part III of tutorial.]
- Linear algorithmic alignment
- To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
- Xu et al., "How Neural Networks Extrapolate...". ICLR'21
- Causality-based alignment
- In general, to extrapolate, we would need to carry a causal model of distribution shift
- Bevilacqua, Zhou and Ribeiro, "Size-invariant Graph Representations...". ICML'21

What do we know, theoretically?

- Algorithmic alignment
- Better structural alignment of the model to the algorithm implies better generalisation
- Informal observation: GNNs align well with dynamic programming!
- Xu et al., "What Can Neural Networks Reason About?". ICLR'20 [See also: Part III of tutorial.]
- Linear algorithmic alignment
- To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
- Xu et al., "How Neural Networks Extrapolate...". ICLR'21
- Causality-based alignment
- In general, to extrapolate, we would need to carry a causal model of distribution shift
- Bevilacqua, Zhou and Ribeiro, "Size-invariant Graph Representations...". ICML'21
- Permutation compatibility
- We usually assume that the GNN is appropriately featurised when executing the algorithm.
- If a task is permutation-compatible, then the choice of features is not even relevant!
- Fereydounian et al., "What Functions Can Graph Neural Networks Generate?". 2022

What do we know, empirically?

- Better-aligned architectures indeed yield better processors!
- Neural Shuffle-Exchange Networks (Freivalds et al., NeurIPS'19)
- Neural Execution of Graph Algorithms (Veličković et al., ICLR’20)

Dynamic programming

- PrediNet (Shanahan et al., ICML'20)

Predicate logic

- IterGNNs (Tang et al., NeurIPS'20)

Iterative algorithms

- Pointer Graph Networks (Veličković et al., NeurIPS'20)
- Persistent Message Passing (Strathmann et al., ICLR'21 SimDL)

What do we know, empirically?

- Better-aligned architectures indeed yield better processors!
- Neural Shuffle-Exchange Networks (Freivalds et al., NeurIPS'19)
- Neural Execution of Graph Algorithms (Veličković et al., ICLR'20)
- PrediNet (Shanahan et al., ICML'20)
- IterGNNs (Tang et al., NeurIPS'20)
- Pointer Graph Networks (Veličković et al., NeurIPS'20)
- Persistent Message Passing (Strathmann et al., ICLR'21 SimDL)
- Careful modifications to the training regime can yield better processors!
- Unsupervised learning (Karalias and Loukas, NeurIPS'20)
- Self-supervised learning (Yehudai et al., ICML'21)
- Shift-size regularisation (Buffelli et al., NeurIPS'22)
- Recall (Bansal, Schwarzschild et al., NeurIPS'22)

What do we know, empirically?

- Better-aligned architectures indeed yield better processors!
- Neural Shuffle-Exchange Networks (Freivalds et al., NeurIPS'19)
- Neural Execution of Graph Algorithms (Veličković et al., ICLR'20)
- PrediNet (Shanahan et al., ICML'20)
- IterGNNs (Tang et al., NeurIPS'20)
- Pointer Graph Networks (Veličković et al., NeurIPS'20)
- Persistent Message Passing (Strathmann et al., ICLR'21 SimDL)
- Careful modifications to the training regime can yield better processors!
- Unsupervised learning (Karalias and Loukas, NeurIPS'20)
- Self-supervised learning (Yehudai et al., ICML'21)
- Shift-size regularisation (Buffelli et al., NeurIPS'22)
- Recall (Bansal, Schwarzschild et al., NeurIPS'22)
- We can also learn multiple algorithms at once!
- NeuralExecutor++ (Xhonneux et al., NeurIPS'21)
- A Generalist Neural Algorithmic Learner (Ibarz et al., LoG'22)

The CLRS-30 Benchmark

Benchmarking algorithmic reasoners

Sorting: Insertion sort, bubble sort, heapsort (Williams, 1964), quicksort (Hoare, 1962).

Searching: Minimum, binary search, quickselect (Hoare, 1961).

Divide and Conquer (D\&C): Maximum subarray (Kadane's variant (Bentley, 1984)).

Greedy: Activity selection (Gavril, 1972), task scheduling (Lawler, 1985).

Dynamic Programming: Matrix chain multiplication, longest common subsequence, optimal binary search tree (Aho et al., 1974).

Graphs: Depth-first and breadth-first search (Moore, 1959), topological sorting (Knuth, 1973), articulation points, bridges, Kosaraju's strongly-connected components algorithm (Aho et al., 1974), Kruskal's and Prim's algorithms for minimum spanning trees (Kruskal, 1956; Prim, 1957), Bellman-Ford and Dijkstra's algorithms for single-source shortest paths (Bellman, 1958; Dijkstra et al., 1959) (+ directed acyclic graphs version), Floyd-Warshall algorithm for all-pairs shortest paths (Floyd, 1962).

Strings: Naïve string matching, Knuth-Morris-Pratt (KMP) string matcher (Knuth et al., 1977).

Geometry: Segment intersection, Convex hull algorithms:
 Graham scan (Graham, 1972), Jarvis' march (Jarvis, 1973).

Benchmarking algorithmic reasoners

https://github.com/deepmind/clrs

The CLRS Algorithmic Reasoning Benchmark

Petar Veličković ${ }^{1}$ Adrià Puigdomènech Badia ${ }^{1}$ David Budden ${ }^{1}$

Razvan Pascanu ${ }^{1}$ Andrea Banino ${ }^{1}$ Misha Dashevskiy ${ }^{1}$ Raia Hadsell ${ }^{1}$ Charles Blundell ${ }^{1}$

Representation

- All algorithms have been boiled down to a common graph representation

Representation

- All algorithms have been boiled down to a common graph representation
- Each algorithm is specified by a fixed number of "probes".
- A probe is a specific variable that is tracked during the algorithm's execution.
- The model may be asked to use those variables as input, predict them as output, or both.
- Specifying the task's probes uniquely determines the dataset shape for this task, the model's encoder/decoder architectures, and loss functions!
- We can think of CLRS-30 as a "dataset / baseline generator" rather than a (single) dataset!

Representation

- All algorithms have been boiled down to a common graph representation
- For example, the spec of insertion sort consists of the following 6 probes:

```
'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node
```


Representation

- All algorithms have been boiled down to a common graph representation
- For example, the spec of insertion sort consists of the following 6 probes:

```
'pos': (Stage.INPUT, Location.NODE, Type.SCALAR)
'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort
```


Representation

- All algorithms have been boiled down to a common graph representation
- For example, the spec of insertion sort consists of the following 6 probes:

```
'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node
'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort
'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order
```


Representation

- All algorithms have been boiled down to a common graph representation
- For example, the spec of insertion sort consists of the following 6 probes:

```
'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node
'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort
'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order
'pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution
```


Representation

- All algorithms have been boiled down to a common graph representation
- For example, the spec of insertion sort consists of the following 6 probes:

```
'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node
'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort
'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order
'pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution
'i': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index for insertion
```


Representation

- All algorithms have been boiled down to a common graph representation
- For example, the spec of insertion sort consists of the following 6 probes:

```
'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node
'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort
'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order
'pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution
'i': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index for insertion
'j':(Stage.HINT, Location.NODE, Type.MASK_ONE) -> index tracking "sorted up to"
```


Representation

- All algorithms have been boiled down to a common graph representation
- For example, the spec of insertion sort consists of the following 6 probes:

```
'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node
'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort
'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order
pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution
i':(Stage.HINT, Location.NODE, Type.MASK_ONE) -> index for insertion
'j':(Stage.HINT, Location.NODE, Type.MASK_ONE) -> index tracking "sorted up to"
```

- A probe can be input, output or hint. Inputs and outputs are fixed during algorithm execution, the hints change during execution - they specify the algorithm (e.g., sorting algorithms differ only in their hints).

Representation: encoding

pos': (Stage.INPUT, Location.NODE, Type.SCALAR)

Representation: encoding

pos': (Stage.INPUT, Location.NODE, Type.SCALAR)
key': (Stage.INPUT, Location.NODE, Type.SCALAR)

Representation: encoding

pos': (Stage.INPUT, Location.NODE, Type.SCALAR)
key': (Stage.INPUT, Location.NODE, Type.SCALAR)
pred_h': (Stage.HINT, Location.NODE, Type.POINTER)

Representation: encoding

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR)
key': (Stage.INPUT, Location.NODE, Type.SCALAR)
pred_h': (Stage.HINT, Location.NODE, Type.POINTER)
i': (Stage.HINT, Location.NODE, Type.MASK_ONE)
j': (Stage.HINT, Location.NODE, Type.MASK_ONE)

Representation: processing

Edge features

Node features

Representation: processing

Edge features

Node features

Node hidden state

Representation: processing

Edge features

Node features
\square Node hidden state

Next step node hidden state

Representation: decoding

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

'j': (Stage.HINT, Location.NODE, Type.MASK_ONE)

Representation: decoding

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

'j': (Stage.HINT, Location.NODE, Type.MASK_ONE)

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER)
(mam
 س חשם шாロா

Representation: decoding

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

'j': (Stage.HINT, Location.NODE, Type.MASK_ONE)

(mam חם س חם

'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER)

向
שח
 שוח ח

Ground truth
i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

'j': (Stage.HINT, Location.NODE, Type.MASK_ONE)

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER)

'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER)

Colab time!

Thank you!

Questions?

petarv@deepmind.com
https://petar-v.com

