Developing

Neural Algorithmic Reasoning

Petar Velickovié¢
Andreea Deac
Andrew Dudzik

Learning on Graphs Conference
10 December 2022

Motivation

What do we mean by algorithm? j

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of
values, as output.

*taken from Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein.

What do we mean by algorithm? j

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of
values, as output.

An algorithm is thus a sequence of computational steps that transform the
input into the output.

*taken from Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein.

What do we mean by algorithm? j

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of
values, as output.

An algorithm is thus a sequence of computational steps that transform the
input into the output.

An algorithm can be specified in English, as a computer program, or even as a
hardware design. The only requirement is that the specification must provide a
precise description of the computational procedure to be followed.

*taken from Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein.

What do we mean by algorithm? j

A common example of an algorithmic task is the sorting problem:

e Input: A sequence of nnumbers|a_, a,, .., a]
e Output: A permutation (reordering) [a",, @, .., @'] of the input sequence,

such that a’1 < a'2 <..<a.
n

*taken from Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein.

What do we mean by algorithm? j

A common example of an algorithmic task is the sorting problem:

e Input: A sequence of nnumbers|a_, a,, .., a]
e Output: A permutation (reordering) [a",, @, .., @'] of the input sequence,

such that a’1 < a'2 <..<a.
n

One algorithm that solves it is insertion sort.

INSERTION-SORT(A)
1 for j = 2to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[l..j — 1].
4 i=j-—1

5 while i > 0 and A[i] > key

6 Ali + 1] = A[i]

7 i=i-1

8 Ali + 1] = key

*taken from Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein.

Why algorithms? i

Essential “pure” forms of combinatorial reasoning

e ‘Timeless' principles that remain, regardless of the model of computation
e Completely decoupled from any form of perception*

*though perception itself may also be expressed in the language of algorithms

~
(=}

1 2 3 4 5 6
i B D € A B A

&

1
0 x| ol ol ol ol ol o] o
1 A T TIN N
ol ol ol o] 1e1] 1
N TN
2 B o] qletler] 1] 2leo
TN T
3€] o] 1l 1] 2le2| 2| 2
AN ot TN
4 B o 1] 1| 2| 2] 3«3
TN I
5 D] o 1] 2| 2| 2| 3] 3
IR EREAN TIN
6 ‘A ol 1| 2| 2| 3| 3| 4
7 B N R AN i
ol 1l 2] 2| 3| af 4

Why algorithms? i

Essential “pure” forms of combinatorial reasoning

e ‘Timeless' principles that remain, regardless of the model of computation
e Completely decoupled from any form of perception

Favourable properties

Trivial strong generalisation
Compositionality via subroutines
Provable correctness and performance guarantees

[
[
[
e Interpretable operations / pseudocode

Why algorithms? i

Essential “pure” forms of combinatorial reasoning

e ‘Timeless' principles that remain, regardless of the model of computation
e Completely decoupled from any form of perception

Favourable properties

Trivial strong generalisation

Compositionality via subroutines

Provable correctness and performance guarantees
Interpretable operations / pseudocode

Hits close to home, for many of us :)

When do
algorithms
exhibit flaws?

A simple example

“Find the optimal path from A to B”

[

A simple example

“Find the optimal path from A to B”

—> Y

Abstract inputs

The theoretical computer scientist diligently uses the Dijkstra hammer!

Abstract outputs

A simple example |2

“Find the optimal path from A to B”

| Bl o

x T >

Natural inputs Abstract inputs Abstract outputs

This kind of question usually hides the real-world problem underneath...

A simple example |2

“Find the optimal path from A to B”

-
: N\
= gel g

x > T —> Y

Natural inputs Abstract inputs Abstract outputs

Can we ever hope to manually do the mapping necessary?

Not really...

SECRET

U. S AR TR

PROJECT RAND

RESEARCH MEMORANDUM

FUNDAMENTALs OF A METHOD FOR EVALUATING
RAIL NET CAPACITIES (U)

T. E. Harris

F. S. Ross
! s p0p
October 24, 1955 Copy .No. =i
S~
- R e e > gt i 8 m Ty . B o .,.-/
This matenal (ontains information offedhing the notional defense of the Umted Srates, witkin
the meaning of the vspronage laws, Tile 18 U S.C, Secs 793 ond 794 the transmissive o the

revelation of which in any manncd 1o an unaviberized peeson 1s piohibited by fow

&

II., THE ESTIMATING OF RAILWAY CAPACITIES

The evaluation of both railway syatem and individual track
capacities 18, to a conoiderable extent, an art, The authors know
of no tested mathematical model or formla that includes all of the
variations and imponderables that must be weighed.* Even vhen the
individual has been closely assoclated with the particular terri-
tory he 1s evaluating, the final answer, however accurate, is

largely one of judgment and experience,

The core problem i

A divide between algorithms and real-world tasks they were designed to solve!

Satisfying the algorithm'’s strict preconditions may drastically lose information.

The core problem i

A divide between algorithms and real-world tasks they were designed to solve!

Satisfying the algorithm'’s strict preconditions may drastically lose information.

It doesn't matter that the algorithm is provably correct,
if it's executed on the wrong inputs!

The core problem i

A divide between algorithms and real-world tasks they were designed to solve!

Satisfying the algorithm'’s strict preconditions may drastically lose information.

It doesn't matter that the algorithm is provably correct,
if it's executed on the wrong inputs!

This is tricky even without considering issues like partially observable data, etc.

In this tutorial, we will attack this core problem by neuralising the algorithm

Neuralising an
algorithm

Attacking the core problem j

The problem rests on manual feature engineering of raw data. This is what
neural networks were designed to solve! :)

Let’s replace our feature extractor with a neural network.

x ' > T > Y
Natural inputs Abstract inputs Abstract outputs

Train the neural network using gradient descent.

Attacking the core problem j

The problem rests on manual feature engineering of raw data. This is what
neural networks were designed to solve! :)

Let’s replace our feature extractor with a neural network.

x ' > 7 > U
Natural inputs Abstract inputs Abstract outputs
This used to be problematic due to discreteness of the algorithm.

Nowadays, there exist established ways to backpropagate through arbitrary
black-box optimisation functions (see, e.g., Vlastelica et al., ICLR'20).

The algorithmic bottleneck j

Fundamental issue: our pipeline strongly commits to using the algorithm.

Once we compute the inputs to the algorithm, we are fully trusting what comes
out of it, with no way to revert any mistakes!

x > T >

Natural inputs Abstract inputs Abstract outputs

The algorithmic bottleneck j

Fundamental issue: our pipeline strongly commits to using the algorithm.

Once we compute the inputs to the algorithm, we are fully trusting what comes
out of it, with no way to revert any mistakes!

x > T > U

Natural inputs Abstract inputs Abstract outputs

In many scenarios, this can lead to the algorithmic bottleneck problem.
What if there is insufficient training data to properly estimate the inputs?
What if we need to run more than one algorithm?

Breaking the bottleneck j

Neural networks derive flexibility from their high-dimensional latents, z € R".

If any component of the latent is poorly predicted, others can step in!

—> U

Natural inputs Latent state Natural outputs

To break the bottleneck, replace the algorithm with a processor network, P.

(The setting naturally aligns with the encode-process-decode paradigm (Hamrick et al., CSS’18))

Breaking the bottleneck j

Assuming we can obtain a processor, P : R™ — R™, such that it somehow aligns
with the algorithmic steps, we have everything we need!

—> U

Natural inputs Latent state Natural outputs

(differentiable, no bottlenecks, can fit residual algorithms by skip-connecting P)

Breaking the bottleneck j

Assuming we can obtain a processor, P : R™ — R™, such that it somehow aligns
with the algorithmic steps, we have everything we need!

—> U

Natural inputs Latent state Natural outputs
How

to obtain latent-state neural networks that align with algorithms?

Neural
Algorithmic
Reasoning

Why do we need a new field? j

What is different about learning a good P, compared to any other ML task?

It needs to imitate the steps of the target algorithm faithfully—which means it
must extrapolate well beyond the training set!

This is a regime in which neural nets tend to struggle!
&

Abstract inputs ; Processor) Abstract outputs
+ \/+3€ 2 (4
N AR —,
i 7 ﬁ h d A
DNDYA = RN
@ TrrIr 1

v
+00

Why do we need a new field?

What is different about learning a good P, compared to any other ML task?

It needs to imitate the steps of the target algorithm faithfully—which means it
must extrapolate well beyond the training set!

This is a regime in which neural nets tend to struggle!

Neural Algorithmic Reasoning is an emerging area that attempts to build
potent processor networks P. This can be done in a variety of ways:

e Architecture choice of P, encoder or decoder
e Choice of input features / their transformations
e Training schedule for the overall system

&

What do we know, theoretically? j

e Algorithmic alignment
o Better structural alignment of the model to the algorithm implies better generalisation

o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR'20

What do we know, theoretically? j

e Algorithmic alignment

o Better structural alignment of the model to the algorithm implies better generalisation
o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR'20

e Linear algorithmic alignment

o To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
o Xu et al, “How Neural Networks Extrapolate...”. ICLR"21

What do we know, theoretically?

e Algorithmic alignment

o Better structural alignment of the model to the algorithm implies better generalisation

o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR'20

e Linear algorithmic alignment

&

o To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).

o Xu et al, “How Neural Networks Extrapolate...”. ICLR"21

GNN Architectures DP Algorithm AN J's:hird for exrpolafion

= W\ S

- (Target Function) AN AV gg g
KO = Bl MLP®(hED, A0, w(v, u)) -

% i G : input graph h: input transform
MLP has to learn non-linear steps dlkll«] = [N o g: easier for extrapolation
e . ¥y a A
hlsk) =L\ MLP(k)(h‘Ek 1), h,gk 1), W(V, u)) d[k _ 1][V] + w(v, u) ‘, *‘: .\v e @ h g
- A AV > h(G) > f(G)
/ MLP learns linear steps o—®

(a) Network architecture (b) Input representation

What do we know, theoretically? j

e Algorithmic alignment
o Better structural alignment of the model to the algorithm implies better generalisation
o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR20
e Linear algorithmic alignment
o To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
o Xu et al, “How Neural Networks Extrapolate...”. ICLR"21
e Causality-based alignment
o In general, to extrapolate, we would need to carry a causal model of distribution shift

What do we know, theoretically? j

e Algorithmic alignment
o Better structural alignment of the model to the algorithm implies better generalisation
o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR'20

e Linear algorithmic alignment
o To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
o Xu et al, “How Neural Networks Extrapolate...”. ICLR"21

e Causality-based alignment
o In general, to extrapolate, we would need to carry a causal model of distribution shift
o Bevilacqua, Zhou and Ribeiro, “Size-invariant Graph Representations..". ICML21

e Permutation compatibility

o We usually assume that the GNN is appropriately featurised when executing the algorithm.
o If atask is permutation-compatible, then the choice of features is not even relevant!
o Fereydounian et al., “What Functions Can Graph Neural Networks Generate?”. 2022

What do we know, empirically?

e Better-aligned architectures indeed yield better processors!
o Neural Shuffle-Exchange Networks (Freivalds et al., NeurlPS'19)

Neural Execution of Graph Algorithms (Velickovi¢ et al., ICLR20)

PrediNet (Shanahan et al., ICML20)

IterGNNs (Tang et al., NeurlPS'20)

o O O O O

&

Linearithmic algorithms
Dynamic programming
Predicate logic

Iterative algorithms
Pointer Graph Networks (Velickovi¢ et al., NeurlPS'20) Pointer-based data structures

Persistent Message Passing (Strathmann et al., ICLR'21 SimDL) Persistent data structures

What do we know, empirically? j

e Better-aligned architectures indeed yield better processors!
o Neural Shuffle-Exchange Networks (Freivalds et al., NeurlPS'19)

Neural Execution of Graph Algorithms (Velickovi¢ et al., ICLR20)

PrediNet (Shanahan et al., ICML20)

IterGNNs (Tang et al., NeurlPS'20)

Pointer Graph Networks (Velickovi¢ et al., NeurlPS'20)

o Persistent Message Passing (Strathmann et al., ICLR'21 SimDL)

e Careful modifications to the training regime can yield better processors!
o Unsupervised learning (Karalias and Loukas, NeurlPS'20)
o Self-supervised learning (Yehudai et al., ICML21)
o Shift-size regularisation (Buffelli et al., NeurlPS'22)
o Recall (Bansal, Schwarzschild et al., NeurlPS'22)

o O O O

What do we know, empirically? j

e Better-aligned architectures indeed yield better processors!
o Neural Shuffle-Exchange Networks (Freivalds et al., NeurlPS'19)

Neural Execution of Graph Algorithms (Velickovi¢ et al., ICLR20)

PrediNet (Shanahan et al., ICML20)

IterGNNs (Tang et al., NeurlPS'20)

Pointer Graph Networks (Velickovi¢ et al., NeurlPS'20)

o Persistent Message Passing (Strathmann et al., ICLR'21 SimDL)

e Careful modifications to the training regime can yield better processors!
o Unsupervised learning (Karalias and Loukas, NeurlPS'20)

Self-supervised learning (Yehudai et al., ICML21)

Shift-size regularisation (Buffelli et al., NeurlPS'22)

Recall (Bansal, Schwarzschild et al., NeurlPS'22)

e We can also learn multiple algorithms at once!
o NeuralExecutor++ (Xhonneux et al., NeurlPS'21)
o A Generalist Neural Algorithmic Learner (Ibarz et al., LoG'22)

o O O O

o O O

The CLRS-30
Benchmark

Benchmarking algorithmic reasoners

Sorting: Insertion sort, bubble sort, heapsort (Williams,
1964), quicksort (Hoare, 1962).

Searching: Minimum, binary search, quickselect (Hoare,
1961).

Divide and Conquer (D&C): Maximum subarray
(Kadane’s variant (Bentley, 1984)).

Greedy: Activity selection (Gavril, 1972), task scheduling
(Lawler, 1985).

Dynamic Programming: Matrix chain multiplication,

longest common subsequence, optimal binary search tree
(Aho et al., 1974).

Graphs: Depth-first and breadth-first search (Moore,
1959), topological sorting (Knuth, 1973), articulation points,
bridges, Kosaraju’s strongly-connected components algo-
rithm (Aho et al., 1974), Kruskal’s and Prim’s algorithms
for minimum spanning trees (Kruskal, 1956; Prim, 1957),
Bellman-Ford and Dijkstra’s algorithms for single-source
shortest paths (Bellman, 1958; Dijkstra et al., 1959) (+ di-
rected acyclic graphs version), Floyd-Warshall algorithm
for all-pairs shortest paths (Floyd, 1962).

Strings: Naive string matching, Knuth-Morris-Pratt (KMP)
string matcher (Knuth et al., 1977).

Geometry: Segment intersection, Convex hull algorithms:
Graham scan (Graham, 1972), Jarvis’ march (Jarvis, 1973).

-
‘\

\ .

Y Y

v

INTRODUCTION TO

ALGORITHMS

THOMAS H.
CHARLES E
RONALD L.

CLIFFORD

THIRD EDITION

Benchmarking algorithmic reasoners

https://github.com/deepmind/clrs

N

I

The CLRS Algorithmic Reasoning Benchmark

Petar Velickovié ! Adria Puigdoménech Badia' David Budden !
Razvan Pascanu' Andrea Banino! Misha Dashevskiy' Raia Hadsell! Charles Blundell!

Representation i

e All algorithms have been boiled down to a common graph representation

Representation i

e All algorithms have been boiled down to a common graph representation

e Each algorithm is specified by a fixed number of “probes”.

o A probe is a specific variable that is tracked during the algorithm'’s execution.
o The model may be asked to use those variables as input, predict them as output, or both.

e Specifying the task’s probes uniquely determines the dataset shape for

this task, the model’s encoder/decoder architectures, and loss functions!
o We can think of CLRS-30 as a “dataset / baseline generator” rather than a (single) dataset!

Representation i

e All algorithms have been boiled down to a common graph representation
e For example, the spec of insertion sort consists of the following 6 probes:

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node

Representation i

e All algorithms have been boiled down to a common graph representation
e For example, the spec of insertion sort consists of the following 6 probes:

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node

'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort

Representation i

e All algorithms have been boiled down to a common graph representation
e For example, the spec of insertion sort consists of the following 6 probes:

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node
'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort

'pred' : (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order

Representation i

e All algorithms have been boiled down to a common graph representation
e For example, the spec of insertion sort consists of the following 6 probes:

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node
'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort
'pred' : (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution

Representation i

e All algorithms have been boiled down to a common graph representation
e For example, the spec of insertion sort consists of the following 6 probes:

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node

'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort

'pred' : (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index for insertion

Representation i

e All algorithms have been boiled down to a common graph representation
e For example, the spec of insertion sort consists of the following 6 probes:

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node

'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort

'pred' : (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution
'i': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index for insertion

'j': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index tracking “sorted up to”

Representation i

e All algorithms have been boiled down to a common graph representation
e For example, the spec of insertion sort consists of the following 6 probes:

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node

'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort

'pred' : (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution
'i': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index for insertion

'j': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index tracking “sorted up to”
e A probe can be input, output or hint. Inputs and outputs are fixed during
algorithm execution, the hints change during execution - they specify the
algorithm (e.g., sorting algorithms differ only in their hints).

Representation: encoding

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR)

0.0 025 || 050 || 0.75 || 1.00
encoder
0.0 025 || 050 || 0.75 || 1.00
X X X X X
\"A \"A \"A \"A \"A

Representation: encoding

'key': (Stage.INPUT, Location.NODE, Type.SCALAR)

0.92 0.17 0.65 0.62 0.04

4

Representation: encoding

‘pred_h': (Stage.HINT, Location.NODE, Type.POINTER)

= (o] =

O O OO
O O O O
_ O O O O
O O O O O

Representation: encoding

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE)
"j': (Stage.HINT, Location.NODE, Type.MASK_ONE)

i j

1 0 0 0 0 1 0 0 0 0

y 0 0 0 0 z 0 0 0 0

Representation: processing

1 Edge features

I Node features

[

Representation: processing

1 Edge features
[Node features

3 Node hidden state

[

Representation: processing

1 Edge features
[Node features

3 Node hidden state

|

[Next step node
hidden state

Representation: decoding j

"i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

=D

"j': (Stage.HINT, Location.NODE, Type.MASK

=~ (ot] =

ofh|s
o lwl~

ok
Y ES

o

NE)

Slo|z|el
alwlofjolo

Representation: decoding j

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

=D

 — " —
"j': (Stage.HINT, Location.NODE, Type.MASK

=~ (ot] =

 — — —

ofh|s
o lwl~

ok
ol

o

NE)

W=
oo

ol
wlo

1<)
13

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER)

ON00O0n OO0 00000 O0O0OND O000m

MO0O0n ETN0OET EO000 ENONTD EmoOm .
OINO0O0 OO0 OO0 OO0 oo - -)
MO0O0 EO0OE0 000 EO0OED oo
ON00O0 0000 OO0 O0O0OED Oooom

= o N © o
[
NWwo N o
|
|

oo N W
oL wN
|
BN RN
RN, IS NI
|
w oo RN
ON J O ™
[
DO W s oy
B0 O W

Representation: decoding j

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

=D

 — " —
"j': (Stage.HINT, Location.NODE, Type.MASK

=~ (ot] =

 — — —

ofh|s
o lwl~

ok
ol

o

NE)

W=
oo

ol
wlo

1<)
13

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER)
D000 COOND OCOOBN COO0ED COOon
EDOOD EDOND EDOBD EOO0ED EDO000 3.
EDO0D EOO0ND OO0 GOOSD Gooon) |
EDOOD EOOED EDOEN EO0ED ED00D 0.
D000 OOOED OOOEN COOED G000

]
oL wN
|
IN]
= o N © o
|
o
RN, IS NI
|
o
ON J O ™
|
w
B0 O W

'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER)
QD000 COOED COOED COOED CO00D
EDOO0 EDOED ED0ED EDOND ED00D -2.
ED0OD EO0ED GOO0M0 GOO0ED o000) |
ED0OD EDOND ED0ND EDOND ED00D 0.
ED0OD COOND COOED COOED Eo0mD o

o B W o
|
w
G © oy
|
w
® N O N W
|
w
s O R N
|
N}
® o O

Training

"i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

"j': (Stage.HINT, Location.NODE, Type.MASK

(oot | =

 — ——

=~ oo |

 — — —

1
[——

e

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER)

oooom
oo
oo
oo
moom

oooEm
EnoEm
mnoEm
EnoEm
moEmD

ooomo
DOm0
mnomn
Enom
oo

ooomm
["unln] ma]
[sen]n] un}
[mnlu] ux}
[ssn]n] un}

oooom
moOm
—= = ~
noom
omoOm

-1.

N}

-0.

'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER)

oooom
oo
oo
oo
moom

oooEm
EnoEm
mnoEm
EnoEm
moEmD

ooomo
DOm0
mnomn
Enom
oo

ooomm
["unln] ma]
[sen]n] un}
[mnlu] ux}
[ssn]n] un}

oooom
moOm
22 o (doutor)
noom
omoOm

-2.
-0.
-3.

0.
-2.

o W WwN

o WwaJo

= oo N

Gy ooy

o

-2.
-0.

|¢

N

o

oIg':I.—‘I.wl.—‘

© U e

® N O N W

>
3

Ground truth
(] n
3 L0
8 ——> L
4 L0
z o]
ONE)
;)
° L
5 ——> L
3 L0
5 (o] ~ Hint loss
-2.8 -6.3 0100 0
~1.0 4.0 0100 0
-0.7 -3.8 100 0 0
-5.2 -5.1 00 1 0 0
3.0 -2.4 00 0 1 0
“1.2 4.0 00 1 0 0
-7.1 3.1 00 0 0 1
-3.0 -2.7 000 0 1 0 OUtpUt loss
-0.4 -1.6 0100 0
-1.9 2.8 00 0 0 1 (last step only)

Colab time!

- Thank you!

e ¥

Questions?

