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What do we mean by algorithm? j

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of
values, as output.

*taken from Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein.
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What do we mean by algorithm? j

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of
values, as output.

An algorithm is thus a sequence of computational steps that transform the
input into the output.

An algorithm can be specified in English, as a computer program, or even as a
hardware design. The only requirement is that the specification must provide a
precise description of the computational procedure to be followed.

*taken from Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein.
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A common example of an algorithmic task is the sorting problem:
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What do we mean by algorithm? j

A common example of an algorithmic task is the sorting problem:

e Input: A sequence of nnumbers|a_, a,, .., a ]
e Output: A permutation (reordering) [a",, @, .., @' ] of the input sequence,

such that a’1 < a'2 <..<a.
n

One algorithm that solves it is insertion sort.

INSERTION-SORT(A)
1 for j = 2to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[l..j — 1].
4 i=j-—1

5 while i > 0 and A[i] > key

6 Ali + 1] = A[i]

7 i=i-1

8 Ali + 1] = key

*taken from Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein.



Why algorithms? i

Essential “pure” forms of combinatorial reasoning

e ‘Timeless' principles that remain, regardless of the model of computation
e Completely decoupled from any form of perception*

*though perception itself may also be expressed in the language of algorithms
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Why algorithms? i

Essential “pure” forms of combinatorial reasoning

e ‘Timeless' principles that remain, regardless of the model of computation
e Completely decoupled from any form of perception

Favourable properties

Trivial strong generalisation
Compositionality via subroutines
Provable correctness and performance guarantees

[
[
[
e Interpretable operations / pseudocode



Why algorithms? i

Essential “pure” forms of combinatorial reasoning

e ‘Timeless' principles that remain, regardless of the model of computation
e Completely decoupled from any form of perception

Favourable properties

Trivial strong generalisation

Compositionality via subroutines

Provable correctness and performance guarantees
Interpretable operations / pseudocode

Hits close to home, for many of us :)



When do
algorithms
exhibit flaws?




A simple example

“Find the optimal path from A to B”

[



A simple example

“Find the optimal path from A to B”

—> Y

Abstract inputs

The theoretical computer scientist diligently uses the Dijkstra hammer!

Abstract outputs



A simple example |2

“Find the optimal path from A to B”

| Bl o

x T >

Natural inputs Abstract inputs Abstract outputs

This kind of question usually hides the real-world problem underneath...



A simple example |2

“Find the optimal path from A to B”
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Natural inputs Abstract inputs Abstract outputs

Can we ever hope to manually do the mapping necessary?



Not really...
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Satisfying the algorithm'’s strict preconditions may drastically lose information.



The core problem i

A divide between algorithms and real-world tasks they were designed to solve!

Satisfying the algorithm'’s strict preconditions may drastically lose information.

It doesn't matter that the algorithm is provably correct,
if it's executed on the wrong inputs!



The core problem i

A divide between algorithms and real-world tasks they were designed to solve!

Satisfying the algorithm'’s strict preconditions may drastically lose information.

It doesn't matter that the algorithm is provably correct,
if it's executed on the wrong inputs!

This is tricky even without considering issues like partially observable data, etc.

In this tutorial, we will attack this core problem by neuralising the algorithm



Neuralising an
algorithm




Attacking the core problem j

The problem rests on manual feature engineering of raw data. This is what
neural networks were designed to solve! :)

Let’s replace our feature extractor with a neural network.

x ' > T > Y
Natural inputs Abstract inputs Abstract outputs

Train the neural network using gradient descent.



Attacking the core problem j

The problem rests on manual feature engineering of raw data. This is what
neural networks were designed to solve! :)

Let’s replace our feature extractor with a neural network.

x ' > 7 > U
Natural inputs Abstract inputs Abstract outputs
This used to be problematic due to discreteness of the algorithm.

Nowadays, there exist established ways to backpropagate through arbitrary
black-box optimisation functions (see, e.g., Vlastelica et al., ICLR'20).



The algorithmic bottleneck j

Fundamental issue: our pipeline strongly commits to using the algorithm.

Once we compute the inputs to the algorithm, we are fully trusting what comes
out of it, with no way to revert any mistakes!
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The algorithmic bottleneck j

Fundamental issue: our pipeline strongly commits to using the algorithm.

Once we compute the inputs to the algorithm, we are fully trusting what comes
out of it, with no way to revert any mistakes!

x > T > U

Natural inputs Abstract inputs Abstract outputs

In many scenarios, this can lead to the algorithmic bottleneck problem.
What if there is insufficient training data to properly estimate the inputs?
What if we need to run more than one algorithm?



Breaking the bottleneck j

Neural networks derive flexibility from their high-dimensional latents, z € R".

If any component of the latent is poorly predicted, others can step in!

—> U

Natural inputs Latent state Natural outputs

To break the bottleneck, replace the algorithm with a processor network, P.

(The setting naturally aligns with the encode-process-decode paradigm (Hamrick et al., CSS’18))



Breaking the bottleneck j

Assuming we can obtain a processor, P : R™ — R™, such that it somehow aligns
with the algorithmic steps, we have everything we need!

—> U

Natural inputs Latent state Natural outputs

(differentiable, no bottlenecks, can fit residual algorithms by skip-connecting P)



Breaking the bottleneck j

Assuming we can obtain a processor, P : R™ — R™, such that it somehow aligns
with the algorithmic steps, we have everything we need!

—> U

Natural inputs Latent state Natural outputs
How

to obtain latent-state neural networks that align with algorithms?



Neural
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Why do we need a new field? j

What is different about learning a good P, compared to any other ML task?

It needs to imitate the steps of the target algorithm faithfully—which means it
must extrapolate well beyond the training set!

This is a regime in which neural nets tend to struggle!
&
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Why do we need a new field?

What is different about learning a good P, compared to any other ML task?

It needs to imitate the steps of the target algorithm faithfully—which means it
must extrapolate well beyond the training set!

This is a regime in which neural nets tend to struggle!

Neural Algorithmic Reasoning is an emerging area that attempts to build
potent processor networks P. This can be done in a variety of ways:

e Architecture choice of P, encoder or decoder
e Choice of input features / their transformations
e Training schedule for the overall system

&
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e Algorithmic alignment
o  Better structural alignment of the model to the algorithm implies better generalisation

o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR'20
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What do we know, theoretically?

e Algorithmic alignment

o  Better structural alignment of the model to the algorithm implies better generalisation

o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR'20

e Linear algorithmic alignment

&

o To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).

o Xu et al, “How Neural Networks Extrapolate...”. ICLR"21
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e Algorithmic alignment
o  Better structural alignment of the model to the algorithm implies better generalisation
o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR20
e Linear algorithmic alignment
o To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
o Xu et al, “How Neural Networks Extrapolate...”. ICLR"21
e Causality-based alignment
o In general, to extrapolate, we would need to carry a causal model of distribution shift




What do we know, theoretically? j

e Algorithmic alignment
o  Better structural alignment of the model to the algorithm implies better generalisation
o Informal observation: GNNs align well with dynamic programming!
o Xu et al., “What Can Neural Networks Reason About?”. ICLR'20

e Linear algorithmic alignment
o To extrapolate, the target functions for parts of our (G)NN must be linear (for ReLU MLPs).
o Xu et al, “How Neural Networks Extrapolate...”. ICLR"21

e Causality-based alignment
o In general, to extrapolate, we would need to carry a causal model of distribution shift
o Bevilacqua, Zhou and Ribeiro, “Size-invariant Graph Representations..". ICML21

e Permutation compatibility

o  We usually assume that the GNN is appropriately featurised when executing the algorithm.
o If atask is permutation-compatible, then the choice of features is not even relevant!
o Fereydounian et al., “What Functions Can Graph Neural Networks Generate?”. 2022



What do we know, empirically?

e Better-aligned architectures indeed yield better processors!
o  Neural Shuffle-Exchange Networks (Freivalds et al., NeurlPS'19)

Neural Execution of Graph Algorithms (Velickovi¢ et al., ICLR20)

PrediNet (Shanahan et al., ICML20)

IterGNNs (Tang et al., NeurlPS'20)

o O O O O
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Linearithmic algorithms
Dynamic programming
Predicate logic

Iterative algorithms
Pointer Graph Networks (Velickovi¢ et al., NeurlPS'20) Pointer-based data structures

Persistent Message Passing (Strathmann et al., ICLR'21 SimDL) Persistent data structures
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What do we know, empirically? j

e Better-aligned architectures indeed yield better processors!
o  Neural Shuffle-Exchange Networks (Freivalds et al., NeurlPS'19)

Neural Execution of Graph Algorithms (Velickovi¢ et al., ICLR20)

PrediNet (Shanahan et al., ICML20)

IterGNNs (Tang et al., NeurlPS'20)

Pointer Graph Networks (Velickovi¢ et al., NeurlPS'20)

o Persistent Message Passing (Strathmann et al., ICLR'21 SimDL)

e Careful modifications to the training regime can yield better processors!
o Unsupervised learning (Karalias and Loukas, NeurlPS'20)

Self-supervised learning (Yehudai et al., ICML21)

Shift-size regularisation (Buffelli et al., NeurlPS'22)

Recall (Bansal, Schwarzschild et al., NeurlPS'22)

e We can also learn multiple algorithms at once!
o  NeuralExecutor++ (Xhonneux et al., NeurlPS'21)
o A Generalist Neural Algorithmic Learner (Ibarz et al., LoG'22)

o O O O

o O O
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Benchmarking algorithmic reasoners

Sorting: Insertion sort, bubble sort, heapsort (Williams,
1964), quicksort (Hoare, 1962).

Searching: Minimum, binary search, quickselect (Hoare,
1961).

Divide and Conquer (D&C): Maximum subarray
(Kadane’s variant (Bentley, 1984)).

Greedy: Activity selection (Gavril, 1972), task scheduling
(Lawler, 1985).

Dynamic Programming: Matrix chain multiplication,

longest common subsequence, optimal binary search tree
(Aho et al., 1974).

Graphs: Depth-first and breadth-first search (Moore,
1959), topological sorting (Knuth, 1973), articulation points,
bridges, Kosaraju’s strongly-connected components algo-
rithm (Aho et al., 1974), Kruskal’s and Prim’s algorithms
for minimum spanning trees (Kruskal, 1956; Prim, 1957),
Bellman-Ford and Dijkstra’s algorithms for single-source
shortest paths (Bellman, 1958; Dijkstra et al., 1959) (+ di-
rected acyclic graphs version), Floyd-Warshall algorithm
for all-pairs shortest paths (Floyd, 1962).

Strings: Naive string matching, Knuth-Morris-Pratt (KMP)
string matcher (Knuth et al., 1977).

Geometry: Segment intersection, Convex hull algorithms:
Graham scan (Graham, 1972), Jarvis’ march (Jarvis, 1973).
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Benchmarking algorithmic reasoners

https://github.com/deepmind/clrs

N
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The CLRS Algorithmic Reasoning Benchmark

Petar Velickovié ! Adria Puigdoménech Badia' David Budden !
Razvan Pascanu' Andrea Banino! Misha Dashevskiy' Raia Hadsell! Charles Blundell!
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Representation i

e All algorithms have been boiled down to a common graph representation

e Each algorithm is specified by a fixed number of “probes”.

o A probe is a specific variable that is tracked during the algorithm'’s execution.
o  The model may be asked to use those variables as input, predict them as output, or both.

e Specifying the task’s probes uniquely determines the dataset shape for

this task, the model’s encoder/decoder architectures, and loss functions!
o  We can think of CLRS-30 as a “dataset / baseline generator” rather than a (single) dataset!
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Representation i

e All algorithms have been boiled down to a common graph representation
e For example, the spec of insertion sort consists of the following 6 probes:

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the id of each node

'key': (Stage.INPUT, Location.NODE, Type.SCALAR) -> the values to sort

'pred' : (Stage.OUTPUT, Location.NODE, Type.POINTER) -> the final node order

'pred_h': (Stage.HINT, Location.NODE, Type.POINTER) -> the node order along execution
'i': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index for insertion

'j': (Stage.HINT, Location.NODE, Type.MASK_ONE) -> index tracking “sorted up to”
e A probe can be input, output or hint. Inputs and outputs are fixed during
algorithm execution, the hints change during execution - they specify the
algorithm (e.g., sorting algorithms differ only in their hints).



Representation: encoding

'pos': (Stage.INPUT, Location.NODE, Type.SCALAR)

0.0 025 || 050 || 0.75 || 1.00
encoder
0.0 025 || 050 || 0.75 || 1.00
X X X X X
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Representation: encoding

'key': (Stage.INPUT, Location.NODE, Type.SCALAR)

0.92 0.17 0.65 0.62 0.04
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Representation: encoding

‘pred_h': (Stage.HINT, Location.NODE, Type.POINTER)
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Representation: encoding

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE)
"j': (Stage.HINT, Location.NODE, Type.MASK_ONE)

i j

1 0 0 0 0 1 0 0 0 0

y 0 0 0 0 z 0 0 0 0




Representation: processing

1 Edge features

I Node features

[



Representation: processing

1 Edge features
[ Node features

3 Node hidden state

[



Representation: processing

1 Edge features
[ Node features

3 Node hidden state

|
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Representation: decoding j

"i': (Stage.HINT, Location.NODE, Type.MASK_ONE)
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Representation: decoding j

'i': (Stage.HINT, Location.NODE, Type.MASK_ONE)
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Representation: decoding j
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Training

"i': (Stage.HINT, Location.NODE, Type.MASK_ONE)

"j': (Stage.HINT, Location.NODE, Type.MASK
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-2.8 -6.3 0100 0
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Colab time!




- Thank you!

e ¥

Questions?




